Verbaspinoside, a New Iridoid Glycoside from Verbascum spinosum ${ }^{1}$

Elefterios Kalpoutzakis, Nektarios Aligiannis, Sofia Mitakou, and Alexios-Leandros Skaltsounis*
Laboratory of Pharmacognosy, Department of Pharmacy, University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece

Received August 10, 1998

Abstract

A new iridoid glycoside, verbaspinoside (1), was isolated from the aerial parts of Verbascum spinosum. Its structure was elucidated on the basis of chemical and spectral data as 6-O-[(2"-O-trans-cinnamoyl)-α-L-rhamnopyranosyl]-catal pol. Additionally, three known iridoids (aucubin, catalpol, and ajugol) and three phenylpropanoid glycosides [acteoside, angoroside A (2), and angoroside C (3)] were isolated and identified.

In a continuation of phytochemical studies on plants from Crete, the aerial parts of the endemic species Verbascum spinosum Lin. (Scrophulariaceae) were investigated. This plant differs from the other species belonging to the genus Verbascum, which are all herbs, in that it is a freely branched shrub up to 50 cm tall, with the branches ending in a spine. ${ }^{2}$

In the present study on V. spinosum, a new iridoid glycoside, verbaspinoside (1), was isolated, together with the three known iridoids, catalpol, ${ }^{3,4}$ aucubin, ${ }^{5,6}$ and ajugol. ${ }^{7}$ In addition to the iridoids, three phenylpropanoid glycosides, acteoside, ${ }^{8-10}$ angoroside A (2), ${ }^{11}$ and angoroside C (3), ${ }^{12,13}$ were also isolated. All these compounds were identified by means of spectral data (UV, ${ }^{1} \mathrm{H} N \mathrm{NR},{ }^{13} \mathrm{C}$ NMR, 2D NMR, and ESMS) and chemical correlations. On the basis of these spectral data, some previous ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR assignments of angorosides A (2) and C (3) have been revised.

Compound $\mathbf{1}$ was obtained as an amorphous powder with the molecular formula $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{15}$ (ESMS m/z $[\mathrm{M}+\mathrm{Na}]^{+}$ 661). Its UV spectrum suggested the presence of an aromatic acyl moiety and an iridoid enol ether system. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) showed the signals of five aromatic protons ($\delta 7.40-7.65$) and two trans olefinic protons arising from a trans-cinnamoyl moiety ($\delta 6.61$ and $7.75, \mathrm{AB}$ system, J AB $=16.2 \mathrm{~Hz}$). Moreover, it showed all the typical protons of a catalpol diglycoside, with two characteristic anomeric protons appearing at $\delta 5.05$ (d, J $=1.7 \mathrm{~Hz}$) and $4.78 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz})$, indicating α-rhamnopyranose and β-glucopyranose to be sugar moieties. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 1) suggested al so the presence of a cinnamoyl group, an α-rhamnopyranosyl unit, and a catal pol moiety. The location of the α-rhamnopyranosyl group was determined to be at the C-6 position in the catalpol unit, from the HMBC spectrum. The site of esterification by the trans-cinnamoyl group was determined to be the C-2" position of the rhamnopyranosyl moiety, because the ${ }^{1} \mathrm{H}$ NMR signal of $\mathrm{H}-2^{\prime \prime}$ was shifted downfield (δ 5.18) in comparison with 6-O-(α-L-rhamnopyranosyl)catalpol. ${ }^{14}$ The site of esterification was confirmed as the C-2" position of the rhamnose unit from the HMBC spectrum, where a long-range coupling was observed between the signal at $\delta_{\mathrm{C}} 168.0$ (carbonyl of trans-cinnamoyl group) and the signal at $\delta_{\mathrm{H}} 5.18$ ($\mathrm{H}-2^{\prime \prime}$). Acetylation of compound 1 afforded the heptaacetate (4), which showed seven aliphatic acetyl signals in the ${ }^{1} \mathrm{H}$ NMR spectrum.

[^0]Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data and COSY and HMBC Correlation of $\mathbf{1}$ in MeOD

position	$\delta^{1} \mathrm{H}(\mathrm{m}, \mathrm{J}$ in Hz)	$\delta{ }^{13} \mathrm{C}$	COSY	HMBC
1	5.09 (d, 9.9)			H-1/'H-3/H-5/H-9
3	6.38 (dd, 6.0, 1.7)	142.3		H-1/H-5
4	5.08 (dd, 6.0, 4.6)	103.4	H-3/H-5	H-6/H-5/H-3
5	2.44 (m)		H-9/H-6/H-4	H-1/H-3/H-7/H-9/H-6
6	4.04 (d, 8.3)			H-1'/H-5/H-9
7	3.66 (s)	59.4		H-10a/H-9/H-6
8		66.5		$\begin{aligned} & \mathrm{H}-1 / \mathrm{H}-10 \mathrm{a} / \mathrm{H}-10 \mathrm{~b} / \\ & \mathrm{H}-9 \end{aligned}$
9	2.58 (dd, 9.9, 7.9)		H-1/H-5	$\begin{gathered} \mathrm{H}-4 / \mathrm{H}-6 / \mathrm{H}-7 / \mathrm{H}-1 / \\ \mathrm{H}-5 / \mathrm{H}-10 \mathrm{~b} \end{gathered}$
10a	4.16 (d, 13.3)	61.5	H-10b	H-7
10b	3.81 (d, 13.3)		H-10a	
1 '	4.78 (d, 7.9)	99.7		H-1
$2 '$	3.27 (dd, 9.1, 7.9)		$\mathrm{H}-\mathbf{1}^{\prime} / \mathrm{H}-3^{\prime}$	H-3'
3	3.41 (t, 9.1)			H-2'
4^{\prime}	3.25 (t, 9.1)	71.8		H-5'/H-3'
5'	$3.32^{\text {a }}$		H-6'a/H-6'b	H-4'/H-1
6'a	3.62 (dd, 12.0, 6.6)	62.9	H-6'b/H-5'	$\mathrm{H}-4^{\prime} / \mathrm{H}-5^{\prime}$
6'b	3.89 (dd, 12.0, 2.0)		H-6'a/H-5'	
1"	5.05 (d, 1.7)	97.6	H-2''	H-6
2"	5.18 (dd, 3.3, 1.7)		H-1"'/H-3"'	H-1"/H-3"
3"	3.95 (dd, 9.9, 3.3)		H-2'"/H-4"'	
$4 \prime$	3.50 (t, 9.9)		H-3"'/H-5"'	$\mathrm{H}-2^{\prime \prime} / \mathrm{H}-6^{\prime \prime} / \mathrm{H}-3^{\prime \prime}$
5"	3.77 (m)		H-4"'/H-6"'	
6 "	1.32 (d, 6.2)	18.0	H-5"	H-4'/H-5"
1"'		135.7		H-3"'/ $\mathrm{H}-5^{\prime \prime \prime} / \mathrm{H}-8^{\prime \prime \prime}$
$2^{\prime \prime \prime}$	7.61-7.65 ${ }^{\text {b }}$	129.3	H-3"'	H-4"'/H-7''
$3^{\prime \prime \prime}$	$7.40-7.44^{\text {b }}$	130.0	H-2"'	
$4^{\prime \prime \prime}$	$7.40-7.44^{\text {b }}$	131.6		H-2'"/H-6"'
5"'	7.40-7.44 ${ }^{\text {b }}$	130.0	H-6"'	
$6^{\prime \prime \prime}$	7.61-7.65 ${ }^{\text {b }}$	129.3	H-5"'	H-7'"/ $\mathrm{H}-4^{\prime \prime \prime}$
7"'	7.75 (d, 16.2)	146.9	H-8"'	H-2'"/H-6"'
8"'	6.61 (d, 16.2)	118.6	H-7"'	H-7"'
$9^{\prime \prime \prime}$		168.0		$\mathrm{H}-2^{\prime \prime} / \mathrm{H}-8^{\prime \prime \prime} / \mathrm{H}-7^{\prime \prime \prime}$

${ }^{\text {a }}$ Overlapping with $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\mathrm{b}}$ Signal patterns unclear due to overlapping.

The observed molecular weight ($\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$] 955) in the ESMS indicated an increase of 294 mass units compared with 1, which accounted for seven acetyl groups. Mild alkaline hydrolysis of $\mathbf{1}$ afforded the known compound 6-O(α-L-rhamnopyranosyl)-catalpol. ${ }^{14}$ Accordingly, the structure of the new compound 1 was determined to be 6-0-[(2"-O-trans-cinnamoyl)- α-L-rhamnopyranosyl)-catal pol, for which we proposed the trivial name verbaspinoside.

To date, several acylated 6-O-($\alpha-$-L-rhamnopyranosyl)catal pol derivatives have been reported from plants bel onging to the family Scrophulariaceae, mainly from various Scrophularia species ${ }^{15}$ and from Verbascum sinuatum, ${ }^{16} \mathrm{~V}$. saccatum, ${ }^{17} \mathrm{~V}$. Iaxum, ${ }^{18} \mathrm{~V}$. thapsus, ${ }^{19}$ and V . pulverulentum. ${ }^{20}$ It is interesting to point out that angorosides A (2)
and C (3) have been previously reported only from plants belonging to the genus Scrophularia.

$2 \mathrm{R}=\mathrm{H}$
$3 \mathrm{R}=\mathrm{CH}_{3}$

Experimental Section

General Experimental Procedures. Optical rotations were measured with a Perkin-Elmer 341 polarimeter. UV spectra were determined in spectroscopic grade MeOH on a Shimadzu-160A spectrophotometer. NMR spectra were obtained with a Bruker AC200 spectrometer and a Bruker DRX400 spectrometer. Chemical shifts are given in δ values with TMS as internal standard. The 2D experiments (COSY, COSY LR, TOCSY, HMQC, TOCSY-HMQC, and HMBC) were performed using standard Bruker microprograms. ESMS was recorded with a Nermag R 10-10C spectrometer. Column chromatography was conducted using Si gel [Merck, 0.04-0.06 mm (flash) and $0.015-0.04 \mathrm{~mm}$], with an applied pressure of 300 mbar. MPLC was performed with a Büchi model 688 apparatus on columns containing Si gel RP-18 (Merck, 0.020.04 mm).

Plant Material. Aerial parts was collected in J une 1996, in mountain Lefka Ori, Crete (Greece). A voucher specimen (no. LK01) is deposited in the herbarium of the Laboratory of Pharmacognosy, Department of Pharmacy, University of Athens.

Extraction and Isolation. Dried, pulverized aerial parts of V . spinosum (1 kg) were first defatted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then extracted with $\mathrm{MeOH}(2.5 \mathrm{~L} \times 3$). The MeOH -soluble extract was evaporated under reduced pressure to give a residue (100 g), a portion of which (15 g) was subjected to vacuum-liquid chromatography on Si gel ($0.015-0.04 \mathrm{~mm}$). Elution with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gradient yielded 9 fractions. Fraction 5 (1.7
g) was submitted to MPLC on RP-18. Elution with $\mathrm{H}_{2} \mathrm{O}$ gave catal pol (20 mg), aucubin (44 mg), and ajugol (40 mg), and elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(70: 30)$ gave acteoside (8 mg), verbaspinoside ($\mathbf{1}, 428 \mathrm{mg}$), and angoroside C ($\mathbf{3}, 55 \mathrm{mg}$). Angoroside A (2, 195 mg) was isolated by the same procedure from fraction 7 (865 mg) with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH} 70: 30$.

Verbaspinoside (1): white amorphous powder; $[\alpha]^{20}{ }_{D}$ -110.9° (c 0.72, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 216$ (4.10), 222 (4.05), 280 (4.16) nm; ${ }^{1} \mathrm{H}$ NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR data, see Table 1; ESMS m/z [M + Na] 661.
Acetylation of 1. Treatment of $\mathbf{1}(10 \mathrm{mg})$ with $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ and pyridine (1 mL) at room temperature overnight fol lowed by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO} 97: 3\right)$ gave the heptaacetate 4 (92\%); $[\alpha]^{20}$ D -57.4° (c $0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 229$ (3.70), 282 (4.33) nm; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime \prime}\right), 7.58-7.53(2 \mathrm{H}$, m, H-2'", H-6"'), 7.41-7.37 (3H, m, H-3'", H-4'", H-5"'), 6.53 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime \prime}$), $6.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0,1.7 \mathrm{~Hz}, \mathrm{H}-3$), 5.41 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,1.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), 5.36 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,9.9$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-3), 5.17-5.10(2 \mathrm{H}, \mathrm{m}$, H-4", H-4'), 5.06 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0,4.6 \mathrm{~Hz}, \mathrm{H}-4$), $5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=1.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.97-4.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right), 4.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=13.1 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 4.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{H}-1), 4.31(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}=12.4,2.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}^{\prime} \mathrm{a}\right), 4.13$ ($\left.1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,3.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}^{\prime} \mathrm{b}\right)$, 3.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}$), 3.95 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}$), 3.92 (1 H , d, J $=8.3 \mathrm{~Hz}, \mathrm{H}-6$), 3.66 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 3.56 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$), 2.61 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.9,7.9 \mathrm{~Hz}, \mathrm{H}-9$), 2.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.22 (3H, d, $\left.\mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 166.0$ (C-9"'), 146.3 (C-7"'), 141.1 (C-3), 134,0 (C-1"'), 130.7 (C-4"'), 128.9 (C-3"'/C-5"'), 128.3 (C-2"'/C-6"'), 117.0 (C-8"'), 102.4 (C-4), 96.6 (C-1"), 96.5 (C-1'), 94.2 (C-1), 83.4 (C-6), 72.5 (C-3'), 72.2 (C$\left.5^{\prime}\right), 71.1$ (C-4"), 70.5 (C-2'), 69.9 (C-2"), 68.8 (C-3"), 68.2 (C4^{\prime}), 66.8 (C-5"), 62.3 (C-8), 62.1 (C-10), 61.0 (C-5'), 58.0 (C-7), 41.6 (C-9), 35.4 (C-5), 17.4 (C-6"); ESMS m/z [M + Na] 955.

Alkaline Hydrolysis of 1. A solution of $1(20 \mathrm{mg})$ in 5% methanolic $\mathrm{KOH}(3 \mathrm{~mL})$ was kept at room temperature for 2 h. The mixture was neutralized with $2 \% \mathrm{HCl}$ and filtered. The filtrate was evaporated to dryness in vacuo, and the residue, 6 -O-($\alpha-\mathrm{L}$-rhamnopyranosyl)-catal pol (81\%), was identified by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data; $[\alpha]^{20}{ }_{\mathrm{D}}-123.1^{\circ}$ (c $0.54, \mathrm{MeOH}$).
Angoroside A (2): ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$) \delta 7.62$ (1H, d, J $\left.=16.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{7}^{\prime \prime \prime}\right)$, 7.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}$), 6.98 ($\left.1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime \prime}\right), 6.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime \prime}\right)$, $6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}-2), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-5)$, $6.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,2.0 \mathrm{~Hz}, \mathrm{H}-6), 6.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}$, $\left.\mathrm{H}-8^{\prime \prime \prime}\right), 5.20\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right), 5.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime}\right), 4.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$, H-1"'"), 4.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 3.95 ($1 \mathrm{H}, \mathrm{br}, \mathrm{H}-2^{\prime \prime}$), 3.88 ($1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}=11.2,1.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\prime}\right), 3.85-3.76$ (4H, m, H-3', H-5', H-4"'", H-5b"'"'), 3.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.62-3.55 (4H, m, H-6a', H-3", H-5", H-2""'), 3.50 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,3.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime \prime}$), 3.46 (1 H , br, H-5a'"''), 3.41 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,7.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 3.30 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=9.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 2.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-7)$, $1.11(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=6.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 50 MHz$) \delta 168.3$ (C-9"'), 149.8 (C-4"'), 148.3 (C-7"'), 146.7 (C-3"'), 146.0 (C-3), 144.6 (C-4), 131.5 (C-1), 127.6 ($\mathrm{C}-1^{\prime \prime \prime}$), 123.3 (C-6"'), 121.3 (C-6), 117.1 (C-5), 116.5 (C-2), 116.3 (C-5"'), 115.2 (C-2"'), 114.6 (C-8"'), 104.9 (C-1"'"), 104.0 (C-1'), 103.0 (C-1"), 81.6 (C-3'), 76.0 (C2'), 74.8 (C-5'), 74.0 (C-3"'"), 73.7 (C-4"), 72.4 (C-2"', C-3"), 72.3 (C-8), 72.0 ($\mathrm{C}-2^{\prime \prime \prime \prime}$), 70.4 (C-4', C-5"), 69.4 (C-4"'"), 68.9 (C-6'), 66.8 (C-5""'), 36.5 (C-7), 18.4 (C-6").

Angoroside C (3): ${ }^{1 \mathrm{H}}$ NMR (MeOD, 400 MHz) $\delta 7.68$ (1 H , $\left.\mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, \mathrm{H}-\mathbf{7}^{\prime \prime \prime}\right), 7.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}-\mathbf{2}^{\prime \prime \prime}\right), 7.11$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime \prime}$), $6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-5$), $6.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime \prime}\right), 6.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-2)$, 6.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9,2.2 \mathrm{~Hz}, \mathrm{H}-6$), $6.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}$, $\left.\mathrm{H}-8^{\prime \prime \prime}\right), 5.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right), 5.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime}\right), 4.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{I}^{\prime}\right), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}$, H-1"'"), 4.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 3.94 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-3^{\prime \prime \prime}$), 3.87 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,1.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\prime}$), 3.84 (3H, s, MeO-4), 3.84-3.74 (5H, m, H-8a, H-3', H-5', H-4"'", H-5b'"'), 3.63-3.56 (4H, m, H-6a', H-3", H-5", H-2'"'), 3.51 (1 H , dd, J = 9.1, 3.3 Hz, H-3"'"), 3.47 ($1 \mathrm{H}, \mathrm{br}, \mathrm{H}-5 a^{\prime \prime \prime \prime}$), 3.42 (1 H , $\left.d d, \mathrm{~J}=9.0,7.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.31\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 2.85$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-7), 1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$

NMR (MeOD, 50 MHz$) \delta 168.3$ (C-9'"), 150.2 (C-4'"), 149.4 (C$3^{\prime \prime \prime}$), 148.2 (C-7"'), 147.7 (C-3), 147.5 (C-4), 133.0 (C-1), 127.5 (C-1"'), 124.5 (C-6"'), 121.2 (C-6), 117.1 (C-2), 116.5 (C-5"'), 114.9 (C-8"'), 112.8 (C-5), 111.7 (C-2"'), 105.1 (C-1"'"), 104.5 (C-1'), 103.0 ($\left(\mathrm{C}-1^{\prime \prime}\right), 81.5$ (C-3'), 76.2 (C-2'), 75.0 (C-5'), 74.1 (C-3"'"), 73.7 (C-4"), 72.4 (C-2"), 72.2 (C-3", C-2"'"), 72.0 (C-8), 70.5 (C-4', C-5"), 69.5 (C-4""'), 69.0 (C-6'), 66.8 (C-5""'), 56.42 ($\mathrm{MeO}-3^{\prime \prime \prime}, \mathrm{MeO}-4$), 36.6 (C-7), 18.4 (C-6").

Acknowledgment. We are grateful to Dr. Francine Libot, Laboratory of Pharmacognosy, School of Pharmacy, University V , Paris, France, for recording the mass spectra.

References and Notes

(1) Part 2 in the series Cretan Plants. F or Part 1, see Kal poutzakis, E.; Chinou, I.; Mitaku, S.; Skaltsounis, A. L.; Harvala C. Nat. Prod. Lett. 1998, 11, 173-179.
(2) Tutin, T. G. Flora Europea; University Press: Cambridge, UK, 1972; Vol. 3, p 208.
(3) Duff, R. B.; Bacon, J. S. D.; Mundie, C. M.; Farmer, V. C.; Russell, J . D.; F orrester, A. R. Biochem. J. 1965, 96, 1-5.
(4) Weinges, K.; Künstler, K.; Schilling, G.; J aggy, H. Liebigs Ann. Chem. 1975, 2190-2194.
(5) Scarpati, M. L.; Esposito, P. Gazz. Chim. Ital. 1967, 97, 1209-1230.
(6) Bailleul, F.; Delaveau, P.; Rabaron, A.; Plat, M.; Koch, M. Phytochemistry 1977, 16, 723-726.
(7) Guiso, M.; Marini-Bettolo, R.; Agostini, A. Gazz. Chim. Ital. 1974 104, 25-33.
(8) Birkofer, L.; Kaiser, C.; Thomas, U. Z. Naturforsch 1968, 23, 10511058.
(9) Andary, C.; Wylde, R.; Laffite, C.; Privat, G.; Winternitz, F. Phytochemistry 1982, 21, 1123-1127.
(10) Sakurai, A.; K ato, T. Bull. Chem. Soc. J pn. 1983, 56, 1573-1574.
(11) Galis, I.; Gross, G.-A.; Sticher, O. Phytochemistry 1987, 26, 20572061.
(12) Galis, I.; Gross, G.-A.; Sticher, O. Phytochemistry 1988, 27, 14651468.
(13) Galis, I.; Zor, M.; Basaran, A. A. J . Nat. Prod. 1993, 56, 606-609.
(14) Weinges, K.; Eltz, H. Liebigs Ann. Chem. 1978, 1968-1973.
(15) Fernandez, L.; Diaz, A. M.; Ollivier, E.; Faure, R.; Balansard G. Phytochemistry 1995, 40, 1569-1571.
(16) Falsone, G.; Laryea, M. D.; Crea, A. E.; Finner, E. Planta Med. 1982, 44, 150-153.
(17) Agabayan, E. Y.; Mnatsakanyan, V. A.; Arutyunyan, L. S. Khim. Prir. Soedin 1983, 1, 38-41.
(18) Mnatsakanyan, V. A.; Arutyunyan, L. S.; Eribekyan, M. I. Khim. Prir. Soedin 1987, 1, 90-96.
(19) Warashina, T.; Miyase, T.; Ueno, A. Chem. Pharm. Bull. 1991, 12, 3261-3264.
(20) Seifert, K.; Lien, N. T.; Schmidt, J.; J ohne, S.; Popov, S. S.; Portel, A. Planta Med. 1989, 55, 470-473.

NP980351F

[^0]: * To whom correspondence should be addressed. Tel.: (301)7274598 Fax: (301)7274594. E-mail: askalts@atlas.uoa.gr.

