Verbaspinoside, a New Iridoid Glycoside from Verbascum spinosum¹

Elefterios Kalpoutzakis, Nektarios Aligiannis, Sofia Mitakou, and Alexios-Leandros Skaltsounis*

Laboratory of Pharmacognosy, Department of Pharmacy, University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece

Received August 10, 1998

A new iridoid glycoside, verbaspinoside (1), was isolated from the aerial parts of *Verbascum spinosum*. Its structure was elucidated on the basis of chemical and spectral data as $6\text{-}O\text{-}[(2''-O\text{-}trans\text{-}cinnamoyl)-\alpha\text{-}L\text{-}rhamnopyranosyl]\text{-}catalpol.$ Additionally, three known iridoids (aucubin, catalpol, and ajugol) and three phenylpropanoid glycosides [acteoside, angoroside A (2), and angoroside C (3)] were isolated and identified.

In a continuation of phytochemical studies on plants from Crete, the aerial parts of the endemic species *Verbascum spinosum* Lin. (Scrophulariaceae) were investigated. This plant differs from the other species belonging to the genus *Verbascum*, which are all herbs, in that it is a freely branched shrub up to 50 cm tall, with the branches ending in a spine.²

In the present study on *V. spinosum*, a new iridoid glycoside, verbaspinoside (1), was isolated, together with the three known iridoids, catalpol,^{3,4} aucubin,^{5,6} and ajugol.⁷ In addition to the iridoids, three phenylpropanoid glycosides, acteoside,^{8–10} angoroside A (2),¹¹ and angoroside C (3),^{12,13} were also isolated. All these compounds were identified by means of spectral data (UV, ¹H NMR, ¹³C NMR, 2D NMR, and ESMS) and chemical correlations. On the basis of these spectral data, some previous ¹H NMR and ¹³C NMR assignments of angorosides A (2) and C (3) have been revised.

Compound 1 was obtained as an amorphous powder with the molecular formula $C_{30}H_{38}O_{15}$ (ESMS m/z [M + Na]⁺ 661). Its UV spectrum suggested the presence of an aromatic acyl moiety and an iridoid enol ether system. The ¹H NMR spectrum (Table 1) showed the signals of five aromatic protons (δ 7.40–7.65) and two trans olefinic protons arising from a *trans*-cinnamoyl moiety (δ 6.61 and 7.75, AB system, $J_{AB} = 16.2$ Hz). Moreover, it showed all the typical protons of a catalpol diglycoside, with two characteristic anomeric protons appearing at δ 5.05 (d, J = 1.7 Hz) and 4.78 ppm (d, J = 7.9 Hz), indicating α -rhamnopyranose and β -glucopyranose to be sugar moieties. The ¹³C NMR spectrum (Table 1) suggested also the presence of a cinnamoyl group, an α -rhamnopyranosyl unit, and a catalpol moiety. The location of the α-rhamnopyranosyl group was determined to be at the C-6 position in the catalpol unit, from the HMBC spectrum. The site of esterification by the trans-cinnamoyl group was determined to be the C-2" position of the rhamnopyranosyl moiety, because the ¹H NMR signal of H-2" was shifted downfield (δ 5.18) in comparison with 6-O-(α -L-rhamnopyranosyl)catalpol.14 The site of esterification was confirmed as the C-2" position of the rhamnose unit from the HMBC spectrum, where a long-range coupling was observed between the signal at $\delta_{\rm C}$ 168.0 (carbonyl of *trans*-cinnamoyl group) and the signal at $\delta_{\rm H}$ 5.18 (H-2"). Acetylation of compound 1 afforded the heptaacetate (4), which showed seven aliphatic acetyl signals in the ¹H NMR spectrum.

 Table 1.
 ¹H and ¹³C NMR Data and COSY and HMBC

 Correlation of 1 in MeOD

position	δ $^1\mathrm{H}$ (m, $J\mathrm{in}\mathrm{Hz}$)	δ ¹³ C	COSY	HMBC
1	5.09 (d, 9.9)	95.1	H-9	H-1'/H-3/H-5/H-9
3	6.38 (dd, 6.0, 1.7)	142.3	H-4	H-1/H-5
4	5.08 (dd, 6.0, 4.6)	103.4	H-3/H-5	H-6/H-5/H-3
5	2.44 (m)	37.2	H-9/H-6/H-4	H-1/H-3/H-7/H-9/H-6
6	4.04 (d, 8.3)	84.3	H-5	H-1"/H-5/H-9
7	3.66 (s)	59.4		H-10a/H-9/H-6
8		66.5		H-1/H-10a/H-10b/ H-9
9	2.58 (dd, 9.9, 7.9)	43.2	H-1/H-5	H-4/H-6/H-7/H-1/ H-5/H-10b
10a	4.16 (d, 13.3)	61.5	H-10b	H-7
10b	3.81 (d, 13.3)		H-10a	
1'	4.78 (d, 7.9)	99.7	H-2′	H-1
2'	3.27 (dd, 9.1, 7.9)	74.8	H-1'/H-3'	H-3′
3′	3.41 (t, 9.1)	77.6	H-2′	H-2′
4'	3.25 (t, 9.1)	71.8		H-5'/H-3'
5'	3.32 ^a	78.6	H-6'a/H-6'b	H-4'/H-1'
6′a	3.62 (dd, 12.0, 6.6)	62.9	H-6'b/H-5'	H-4'/H-5'
6′b	3.89 (dd, 12.0, 2.0)		H-6′a/H-5′	
1″	5.05 (d, 1.7)	97.6	H-2‴	H-6
2''	5.18 (dd, 3.3, 1.7)	74.4	H-1‴/H-3‴	H-1"/H-3"
3″	3.95 (dd, 9.9, 3.3)	70.4	H-2‴/H-4‴	
4″	3.50 (t, 9.9)	74.2	H-3‴/H-5‴	H-2"/H-6"/H-3"
5″	3.77 (m)	70.3	H-4‴/H-6‴	
6″	1.32 (d, 6.2)	18.0	H-5″	H-4"/H-5"
1‴		135.7		H-3‴/H-5‴/H-8‴
2‴	$7.61 - 7.65^{b}$	129.3	H-3‴	H-4‴/H-7‴
3‴	$7.40 - 7.44^{b}$	130.0	H-2‴	
4‴	$7.40 - 7.44^{b}$	131.6		H-2‴/H-6‴
5‴	$7.40 - 7.44^{b}$	130.0	H-6‴	
6‴	$7.61 - 7.65^{b}$	129.3	H-5‴	H-7'''/H-4'''
7‴	7.75 (d, 16.2)	146.9	H-8‴	H-2‴/H-6″
8‴	6.61 (d, 16.2)	118.6	H-7‴	H-7"
9‴		168.0		H-2"/H-8"'/H-7"

 a Overlapping with CD₃OD. b Signal patterns unclear due to overlapping.

The observed molecular weight (m/z [M + Na⁺] 955) in the ESMS indicated an increase of 294 mass units compared with **1**, which accounted for seven acetyl groups. Mild alkaline hydrolysis of **1** afforded the known compound 6-O-(α -L-rhamnopyranosyl)-catalpol.¹⁴ Accordingly, the structure of the new compound **1** was determined to be 6-O-[(2''-O-trans-cinnamoyl)- α -L-rhamnopyranosyl)-catalpol, for which we proposed the trivial name verbaspinoside.

To date, several acylated 6-O-(α -L-rhamnopyranosyl)catalpol derivatives have been reported from plants belonging to the family Scrophulariaceae, mainly from various *Scrophularia* species¹⁵ and from *Verbascum sinuatum*,¹⁶ *V. saccatum*,¹⁷ *V. laxum*,¹⁸ *V. thapsus*,¹⁹ and *V. pulverulentum*.²⁰ It is interesting to point out that angorosides A (**2**)

^{*} To whom correspondence should be addressed. Tel.: (301)7274598. Fax: (301)7274594. E-mail: askalts@atlas.uoa.gr.

and C (**3**) have been previously reported only from plants belonging to the genus *Scrophularia*.

Experimental Section

General Experimental Procedures. Optical rotations were measured with a Perkin–Elmer 341 polarimeter. UV spectra were determined in spectroscopic grade MeOH on a Shimadzu-160A spectrophotometer. NMR spectra were obtained with a Bruker AC200 spectrometer and a Bruker DRX400 spectrometer. Chemical shifts are given in δ values with TMS as internal standard. The 2D experiments (COSY, COSY LR, TOCSY, HMQC, TOCSY–HMQC, and HMBC) were performed using standard Bruker microprograms. ESMS was recorded with a Nermag R 10–10C spectrometer. Column chromatography was conducted using Si gel [Merck, 0.04–0.06 mm (flash) and 0.015–0.04 mm], with an applied pressure of 300 mbar. MPLC was performed with a Büchi model 688 apparatus on columns containing Si gel RP-18 (Merck, 0.02–0.04 mm).

Plant Material. Aerial parts was collected in June 1996, in mountain Lefka Ori, Crete (Greece). A voucher specimen (no. LK01) is deposited in the herbarium of the Laboratory of Pharmacognosy, Department of Pharmacy, University of Athens.

Extraction and Isolation. Dried, pulverized aerial parts of *V. spinosum* (1 kg) were first defatted with CH_2Cl_2 and then extracted with MeOH (2.5 L × 3). The MeOH-soluble extract was evaporated under reduced pressure to give a residue (100 g), a portion of which (15 g) was subjected to vacuum–liquid chromatography on Si gel (0.015–0.04 mm). Elution with a CH_2Cl_2 –MeOH gradient yielded 9 fractions. Fraction 5 (1.7

g) was submitted to MPLC on RP-18. Elution with H_2O gave catalpol (20 mg), aucubin (44 mg), and ajugol (40 mg), and elution with H_2O -MeOH (70:30) gave acteoside (8 mg), verbaspinoside (1, 428 mg), and angoroside C (3, 55 mg). Angoroside A (2, 195 mg) was isolated by the same procedure from fraction 7 (865 mg) with H_2O -MeOH 70:30.

Verbaspinoside (1): white amorphous powder; $[\alpha]^{20}_{\text{D}}$ –110.9° (*c* 0.72, MeOH); UV (MeOH) λ_{max} (log ϵ) 216 (4.10), 222 (4.05), 280 (4.16) nm; ¹H NMR data, see Table 1; ¹³C NMR data, see Table 1; ESMS *m*/*z* [M + Na]⁺ 661.

Acetylation of 1. Treatment of 1 (10 mg) with Ac₂O (1 mL) and pyridine (1 mL) at room temperature overnight followed by flash column chromatography ($CH_2Cl_2-Me_2CO$ 97:3) gave the heptaacetate **4** (92%); $[\alpha]^{20}_{D}$ -57.4° (*c* 0.62, CH₂Cl₂); UV $(CH_2Cl_2) \lambda_{max} (\log \epsilon) 229 (3.70), 282 (4.33) nm; {}^{1}H NMR (CDCl_3, 100)$ 400 MHz) δ 7.72 (1H, d, J = 16.2 Hz, H-7"), 7.58–7.53 (2H, m, H-2", H-6"), 7.41-7.37 (3H, m, H-3", H-4", H-5"), 6.53 (1H, d, J = 16.2 Hz, H-8'''), 6.30 (1H, dd, J = 6.0, 1.7 Hz, H-3),5.41 (1H, dd, J = 3.3, 1.7 Hz, H-2"), 5.36 (1H, dd, J = 3.3, 9.9 Hz, H-3"), 5.20 (1H, t, J = 9.5 Hz, H-3), 5.17-5.10 (2H, m, H-4", H-4'), 5.06 (1H, dd, J = 6.0, 4.6 Hz, H-4), 5.00 (1H, d, J = 1.7 Hz, H-1"), 4.97–4.91 (2H, m, H-1', H-2'), 4.80 (1H, d, J = 13.1 Hz, H-10a), 4.74 (1H, d, J = 9.9 Hz, H-1), 4.31 (1H, dd, J = 12.4, 2.2 Hz, H-6'a), 4.13 (1H, dd, J = 12.4, 3.3 Hz, H-6'b), 3.96 (1H, m, H-5"), 3.95 (1H, d, J = 13.1 Hz, H-10b), 3.92 (1H, d, J = 8.3 Hz, H-6), 3.66 (1H, m, H-5'), 3.56 (1H, s, H-7), 2.61 (1H, dd, J = 9.9, 7.9 Hz, H-9), 2.49 (1H, m, H-5), 1.22 (3H, d, $J = 6.2 \text{ Hz}, \text{ H-6''}); ^{13}\text{C NMR (CDCl}_3, 50 \text{ MHz}) \delta 166.0 (C-9'''), \\ 146.3 (C-7'''), 141.1 (C-3), 134,0 (C-1'''), 130.7 (C-4'''), 128.9 (C-3'''/C-5'''), 128.3 (C-2'''/C-6'''), 117.0 (C-8'''), 102.4 (C-4), 96.6$ (C-1"), 96.5 (C-1'), 94.2 (C-1), 83.4 (C-6), 72.5 (C-3'), 72.2 (C-5'), 71.1 (C-4"), 70.5 (C-2'), 69.9 (C-2"), 68.8 (C-3"), 68.2 (C-4'), 66.8 (C-5"), 62.3 (C-8), 62.1 (C-10), 61.0 (C-5'), 58.0 (C-7), 41.6 (C-9), 35.4 (C-5), 17.4 (C-6"); ESMS m/z [M + Na]⁺ 955.

Alkaline Hydrolysis of 1. A solution of **1** (20 mg) in 5% methanolic KOH (3 mL) was kept at room temperature for 2 h. The mixture was neutralized with 2% HCl and filtered. The filtrate was evaporated to dryness in vacuo, and the residue, 6-O-(α -L-rhamnopyranosyl)-catalpol (81%), was identified by ¹H NMR and ¹³C NMR data; [α]²⁰_D -123.1° (*c* 0.54, MeOH).

Angoroside A (2): ¹H NMR (MeOD, 400 MHz) δ 7.62 (1H, d, J = 16.1 Hz, H-7""), 7.08 (1H, d, J = 1.4 Hz, H-2""), 6.98 (1H, dd, J = 8.3, 1.4 Hz, H-6""), 6.81 (1H, d, J = 8.3 Hz, H-5""), 6.74 (1H, d, J = 2.0 Hz, H-2), 6.70 (1H, d, J = 8.3 Hz, H-5), 6.59 (1H, dd, J = 8.3, 2.0 Hz, H-6), 6.30 (1H, d, J = 16.1 Hz, H-8""), 5.20 (1H, d, J = 1.5 Hz, H-1"), 5.00 (1H, t, J = 9.8 Hz, H-4'), 4.39 (1H, d, J = 7.8 Hz, H-1'), 4.24 (1H, d, J = 6.8 Hz, H-1""), 4.04 (1H, m, H-8b), 3.95 (1H, br, H-2"), 3.88 (1H, dd, J = 11.2, 1.4 Hz, H-6b'), 3.85-3.76 (4H, m, H-3', H-5', H-4''' H-5b""), 3.74 (1H, m, H-8a), 3.62-3.55 (4H, m, H-6a', H-3") H-5", H-2""), 3.50 (1H, dd, J = 9.5, 3.3 Hz, H-3""), 3.46 (1H, br, H-5a''''), 3.41 (1H, dd, $J\!=$ 8.8, 7.8 Hz, H-2'), 3.30 (1H, t, J= 9.8 Hz, H-4"), 2.80 (2H, t, J = 7.3 Hz, H-7), 1.11 (3H, d, J = 6.3 Hz, H-6"); $^{13}\mathrm{C}$ NMR (MeOD, 50 MHz) δ 168.3 (C-9"), 149.8 (C-4"), 148.3 (C-7"), 146.7 (C-3"), 146.0 (C-3), 144.6 (C-4), 131.5 (C-1), 127.6 (C-1"), 123.3 (C-6"), 121.3 (C-6), 117.1 (C-5), 116.5 (C-2), 116.3 (C-5""), 115.2 (C-2""), 114.6 (C-8""), 104.9 (C-1""), 104.0 (C-1'), 103.0 (C-1"), 81.6 (C-3'), 76.0 (C-2'), 74.8 (C-5'), 74.0 (C-3'''), 73.7 (C-4''), 72.4 (C-2'', C-3''), 72.3 (C-8), 72.0 (C-2""), 70.4 (C-4', C-5"), 69.4 (C-4""), 68.9 (C-6'), 66.8 (C-5""), 36.5 (C-7), 18.4 (C-6").

Angoroside C (3): ¹H NMR (MeOD, 400 MHz) δ 7.68 (1H, d, J = 15.9 Hz, H-7"'), 7.23 (1H, d, J = 1.8 Hz, H-2"'), 7.11 (1H, dd, J = 8.5, 1.8 Hz, H-6"'), 6.85 (1H, d, J = 7.9 Hz, H-5), 6.83 (1H, d, J = 8.5 Hz, H-5"'), 6.77 (1H, d, J = 2.2 Hz, H-2), 6.72 (1H, dd, J = 7.9, 2.2 Hz, H-6), 6.39 (1H, d, J = 15.9 Hz, H-8"'), 5.21 (1H, d, J = 1.7 Hz, H-1"), 5.00 (1H, t, J = 9.8 Hz, H-4'), 4.41 (1H, d, J = 7.9 Hz, H-1'), 4.26 (1H, d, J = 6.7 Hz, H-1"''), 4.08 (1H, m, H-8b), 3.94 (1H, dd, J = 1.5, 1.7 Hz, H-2''), 3.84 (3H, s, MeO-4'), 3.87 (1H, dd, J = 11.5, 1.7 Hz, H-6''', 3.84 (3H, s, MeO-4'), 3.87 (1H, H-6a', H-3", H-5'', H-2'''), 3.51 (1H, dd, J = 9.1, 3.3 Hz, H-3'''), 3.47 (1H, br, H-5a'''), 3.42 (1H, dd, J = 9.0, 7.9 Hz, H-2'), 3.31 (1H, t, J = 9.8 Hz, H-4''), 2.85 (2H, t, J = 7.3 Hz, H-7), 1.12 (3H, d, J = 6.1 Hz, H-6''); ¹³C

NMR (MeOD, 50 MHz) δ 168.3 (C-9"'), 150.2 (C-4"'), 149.4 (C-3"'), 148.2 (C-7"'), 147.7 (C-3), 147.5 (C-4), 133.0 (C-1), 127.5 (C-1"'), 124.5 (C-6"'), 121.2 (C-6), 117.1 (C-2), 116.5 (C-5"'), 114.9 (C-8"'), 112.8 (C-5), 111.7 (C-2"'), 105.1 (C-1"''), 104.5 (C-1'), 103.0 (C-1'), 81.5 (C-3'), 76.2 (C-2'), 75.0 (C-5'), 74.1 (C-3"''), 73.7 (C-4"), 72.4 (C-2"), 72.2 (C-3", C-2"''), 72.0 (C-8), 70.5 (C-4', C-5''), 69.5 (C-4"''), 69.0 (C-6), 66.8 (C-5"''), 56.42 (MeO-3"'', MeO-4), 36.6 (C-7), 18.4 (C-6").

Acknowledgment. We are grateful to Dr. Francine Libot, Laboratory of Pharmacognosy, School of Pharmacy, University V, Paris, France, for recording the mass spectra.

References and Notes

- Part 2 in the series Cretan Plants. For Part 1, see Kalpoutzakis, E.; Chinou, I.; Mitaku, S.; Skaltsounis, A. L.; Harvala C. *Nat. Prod. Lett.* 1998, *11*, 173–179.
- (2) Tutin, T. G. *Flora Europea*; University Press: Cambridge, UK, 1972; Vol. 3, p 208.
- (3) Duff, R. B.; Bacon, J. S. D.; Mundie, C. M.; Farmer, V. C.; Russell, J. D.; Forrester, A. R. *Biochem. J.* **1965**, *96*, 1–5.
- (4) Weinges, K.; Künstler, K.; Schilling, G.; Jaggy, H. Liebigs Ann. Chem. 1975, 2190–2194.
- (5) Scarpati, M. L.; Esposito, P. Gazz. Chim. Ital. 1967, 97, 1209-1230.
- (6) Bailleul, F.; Delaveau, P.; Rabaron, A.; Plat, M.; Koch, M. *Phytochemistry* 1977, *16*, 723–726.

- (7) Guiso, M.; Marini-Bettolo, R.; Agostini, A. Gazz. Chim. Ital. 1974, 104, 25–33.
- (8) Birkofer, L.; Kaiser, C.; Thomas, U. Z. Naturforsch 1968, 23, 1051– 1058.
- (9) Andary, C.; Wylde, R.; Laffite, C.; Privat, G.; Winternitz, F. Phytochemistry 1982, 21, 1123–1127.
- (10) Sakurai, A.; Kato, T. Bull. Chem. Soc. Jpn. 1983, 56, 1573-1574.
- (11) Galis, I.; Gross, G.-A.; Sticher, O. Phytochemistry 1987, 26, 2057– 2061.
- (12) Galis, I.; Gross, G.-A.; Sticher, O. Phytochemistry 1988, 27, 1465– 1468.
- (13) Galis, I.; Zor, M.; Basaran, A. A. J. Nat. Prod. 1993, 56, 606-609.
- (14) Weinges, K.; Eltz, H. Liebigs Ann. Chem. 1978, 1968-1973.
- (15) Fernandez, L.; Diaz, A. M.; Ollivier, E.; Faure, R.; Balansard G. *Phytochemistry* **1995**, *40*, 1569–1571.
- (16) Falsone, G.; Laryea, M. D.; Crea, A. E.; Finner, E. Planta Med. 1982, 44, 150–153.
- (17) Agabayan, E. Y.; Mnatsakanyan, V. A.; Arutyunyan, L. S. Khim. Prir. Soedin 1983, 1, 38–41.
- (18) Mnatsakanyan, V. A.; Arutyunyan, L. S.; Eribekyan, M. I. *Khim. Prir. Soedin* **1987**, *1*, 90–96.
- (19) Warashina, T.; Miyase, T.; Ueno, A. Chem. Pharm. Bull. 1991, 12, 3261–3264.
- (20) Seifert, K.; Lien, N. T.; Schmidt, J.; Johne, S.; Popov, S. S.; Portel, A. Planta Med. 1989, 55, 470–473.

NP980351F